
A Framework to Support Software Quality Trade-offs

from a Process-Based Perspective

Gabriel Alberto García-Mireles
1
, M

a
 Ángeles Moraga

2
, Félix García

2
 and Mario

Piattini
2

1Departmento de Matemáticas, Universidad de Sonora

Blvd. Encinas y Rosales s/n col. Centro, 83000 Hermosillo, Sonora, México
mireles@gauss.mat.uson.mx

2Instituto de Tecnologías y Sistemas de Información, Universidad de Castilla-La Mancha, Pa-

seo de la Universidad 4, 13071, Ciudad Real, España
{MariaAngeles.Moraga, Felix.Garcia, Mario.Piattini}@uclm.es

Abstract. Software organizations currently deploy various software quality

frameworks simultaneously, which could have an impact on both product and

process. From a product perspective, organizations are attempting to provide

software that will meet stakeholders’ quality requirements. However, experts in

requirements have pointed out the complexity of dealing with quality require-

ments and their interactions, particularly those which are conflictive. Although

various methods with which to carry out trade-off studies of software architec-

ture models have been proposed, few have addressed the problem of software

quality trade-offs from a process improvement perspective. Since a trade-off

study is a kind of decision process, we have reviewed the decision processes in

CMMI and ISO/IEC 12207 in order to identify the process requirements. As we

wished to deal with only one set of requirements, we have applied a harmoniza-

tion technique whose results show that it is possible to embed the ISO/IEC

12207 decision process into the CMMI decision process. With regard to the is-

sues related to quality attribute interactions and the previously identified re-

quirements, we have developed a proposal for a process framework to deal with

these issues, which includes a trade-off quality process. We depict the elements

taken into account to build the framework, and the trade-off process is present-

ed at generic level.

Keywords: harmonization, mapping, trade-off study, CMMI-DEV, ISO/IEC

12207, quality requirements conflict, decision process.

1 Introduction

Software quality is a fundamental feature that must be addressed throughout the prod-

uct development life cycle. Software quality is defined as “the extent in which soft-

ware has a combination of desired attributes” [1]. These desired attributes can be

found in software product quality models such as ISO/IEC 9126, FURPS, McCall,

mailto:mireles@gauss.mat.uson.mx

and others. Indeed, one important goal in software development is to achieve a bal-

ance among the desired quality attributes [2], but some of them may be very difficult,

or even impossible, to implement in the software product when they contradict each

other. This situation is termed as conflict [3]. Some of the factors that may cause

conflict among quality attributes to arise are the individual’s perception of quality

[4], inconsistency among quality models [5], and the lack of appropriate methods and

techniques [6]. Software engineers must consequently carry out a trade-off study in

order to balance quality requirements and build a better system [1]. A trade-off study

is described as being a systematic approach through which to analyze the advantages

and disadvantages of each proposed requirement or design alternative [7].

Various studies have addressed the question of software quality trade-offs. For in-

stance, the WinWin approach considers the conflicting requirements and uses a tool

to inform relevant stakeholders about the possible strategies that can be deemed to

resolve the situation [2]. The NFR framework provides a modeling approach in which

quality requirements can be modeled as softgoals and the mechanisms proposed to

achieve them can also be included [8]. In a recent mapping study, Barney et al. [9]

found diverse solution proposals that can be used to tackle software quality trade-offs.

The results showed that the majority of papers are focused on methods that support

architecture trade-offs. The same authors also found evidence of trade-off methods

applied to requirements and processes. At the process level, the principal topic is that

of tailoring ISO9126 to a specific context and assigning weights to quality character-

istics. As a conclusion, the authors pointed out that the research area is still maturing.

The literature reviewed depicts a number of methods and techniques for use in dealing

with software quality tradeoffs, but their scope is limited to a particular research area.

The aim of this paper is to propose a framework to deal with software quality

tradeoffs at earlier software product development phases aligned with CMMI [10] and

ISO12207 [11]. In previous work, we carried out a harmonization effort in order to

identify practices that support product quality characteristics, and discovered that

process improvement models address them in the analysis and design phases [12].

Since a trade-off study is a kind of decision process, we reviewed the requirements for

the decision process from CMMI and ISO12207 by applying a harmonization ap-

proach [13]. The requirements identified have contributed to the process framework

presented herein.

The process framework supports the tailoring of quality models in order to refine the

understanding of quality terms with regard to the kind of software product that an

organization develops. It also provides support to deal with interactions among quali-

ty characteristics, and when negative interactions are identified in the software pro-

ject, the framework provides a software quality trade-off process.

The remainder of this paper is structured as follows: Section 2 describes the works

existing in literature that concern the decision-making approach. In Section 3 the

comparison between the CMMI and ISO12207 processes is presented. Section 4 de-

picts the framework proposed to deal with software quality trade-offs. Finally, Section

5 shows our conclusions and future work.

2 Related work

Many decision-making situations occur during software development. In practice,

decision makers rely on their experience, attitude and intuition, and this depends on

the context, such as the budget and the time available to make a decision [14]. In an

empirical study concerning how software engineers make design decisions, Zannier et

al. [15] reported that they can apply either a rational decision making approach when

the problem under consideration is well-structured or a naturalistic decision making

approach when the problem is perceived as ill-structured. Software project decisions

can also be made at strategic, tactical and operational organizational levels [16].

Despite the importance of decision-making in software engineering, little empirical

research has been reported [15]. Ruhe [17] summarizes the major concerns as regards

decision-making and concludes that decisions are often poorly understood or de-

scribed, made under time pressure, based on intuition, and consider only a few rele-

vant stakeholders. Strategic and operational decisions concerning products, process,

technologies or tools and other resources are far from being mature. Any stakeholder

can perceive, interpret and evaluate the quality characteristics with regard to his/her

own experience. This subjectivity could produce conflicting quality requirements [8].

Uncertainty and incompleteness are inherent characteristics of software quality re-

quirements at the beginning of software development [18]. When conflicts emerge

among quality requirements, software engineers should manage them. Indeed, as Rob-

inson et al. [6] points out, requirements interaction management is a critical area.

Some proposals with which to manage conflicting quality requirements have also

appeared, such as the WinWin approach [2], the NFR framework [8] and KAOS [19].

Various researchers have reported conflicting relationships among quality require-

ments [2, 3, 20-23].There are, however, different opinions as to the source of conflic-

tive dependencies. Some authors have stated that conflict is inherent to a pair of quali-

ty requirements, while others emphasize that conflictive interactions depend on the

software architecture and coding [22].

Several types of methods can be used to carry out a trade-off study, some of which

depend on expert judgment, while others use semi-formal and formal models to com-

pare alternatives [3]. The mapping study results in [9] reported that almost 50% (of

168 papers) deal with software architecture decision. Moreover, 25% of the papers

address product quality and software process from a generic perspective. There are

very few studies dealing with software coding and testing phases. The most common

methods reported were the Analytical Hierarchy Process (AHP), model building, the

Architecture Tradeoff Analysis Method (ATAM), algorithm-based and metric-based

methods, expert opinion, Quality Function Deployment (QFD) and prototypes. At the

analysis stage, the authors of the mapping study found specific techniques such as the

Quality Performance (QUPER) model, prototyping and negotiation. With regard to

the design stage, they reported additional techniques such as goals models, metrics,

expert opinion and the automated construction of architecture alternatives. However,

little empirical support is provided when software quality trade-offs are involved [9].

Software architecture trade-off methods have also been studied in order to understand

the benefits and shortcomings of each one. Falessi et al. [24] compared decision-

making techniques at the software design stage, taking into account the difficulties

involved in using it. They found that there is no the best decision-making technique

for the resolution of trade-offs in architecture design. In addition, Babar [25] proposed

a framework with which to compare and evaluate various software architecture evalu-

ation methods. Of the nine methods evaluated, only ATAM has the goal of analyzing

trade-offs.

With regard to the development of decision-making processes based on ISO/IEC

12207 [11] or CMMI-Dev1.3 [10], we found that the Decision Analysis and Resolu-

tion (DAR) process area has been considered to define decision-making processes as

regards the domains of both commercial-off-the-shelf (COTS) components and out-

sourcing companies. In the former category, Vantakavikran and Prompoon [26] de-

scribed a process model with three layers, and they mapped each activity with DAR

process area goals and practices. Phillips and Polen [27] described the Comparative

Evaluation Process (CEP). They suggested set of criteria included the commonly

evaluated characteristics (function, costs, maintainability and installation) and others

that impact on management, architecture and strategic goals. They also considered

contextual project factors and the credibility of data source. In the latter category,

Hayshi [28], established a decision-making process with which to select outsourcing

companies by considering the DAR process, and the AHP technique was used to pri-

oritize criteria. This author also classified criteria as being either absolute or relative

in order to reduce the number of alternatives when they did not meet the absolute

criteria.

Finally, with regard to the harmonization approach, Pino et al. [13] reported that the

Decision Management (DM) process from ISO/IEC 12207 has a partial relationship

with practices from the DAR process area, but did not include the details of this com-

parison. Indeed, a current research line in harmonization is that of mapping models to

discover the common practices among models [13, 29]. However, we wish to enrich

this research area by using these mappings to build new processes.

3 Comparison between CMMI and ISO/IEC 12207 decision

processes

Harmonization is an approach whose goals consist of deploying diverse quality im-

provement models in organizations, optimizing resources, and simultaneously obtain-

ing the expected benefits of each model and achieving business goals [30]. In particu-

lar, we are interested in the identification of requirements for the decision-making

process based on CMMI [10] and ISO12207 [11], in order to define a process whose

goal is to support quality trade-off decisions. Requirements were extracted from mod-

els by carrying out a comparison between the decision processes of both models by

adapting the techniques proposed in García-Mireles [12] and Pino et al. [13]. The

activities involved in this comparison were:

1. Analyze models. The purpose of this is to understand the improvement models’

goals, structure, and requirements. In this study, we describe the decision pro-

cesses involved in the comparison.

2. Design mapping. The purpose of this is to set out a comparison procedure and to

design mapping templates. We are interested in the details of the implementation

of quality requirements. We then consider additional information such as sub-

practices, notes and process outcomes.

3. Execute mapping. The purpose of this is to apply a comparison procedure in or-

der to achieve mapping results.

4. Establish quality requirements. The purpose of this is to report requirements iden-

tified with regard to each model and to propose a solution that will allow them to

be integrated into a process definition.

4.1 Analyze models

The Decision Analysis and Resolution (DAR) Process Area of CMMI-DEV1.3 be-

longs to the support category and appertains to the defined process level (maturity

level 3). The process relies on a systematic evaluation process and established criteria

to evaluate identified alternatives. Although it is recognized that uncertainty is one of

the principal risks when making a decision, the model emphasizes a rationalistic ap-

proach to select, monitor and control either methods or selection criteria. The process

also seeks new alternatives when the alternatives evaluated do not meet the stated

requirements. The process area describes the specific goals, practices, sub-practices

and exemplary of possible outcomes. There are also informative notes.

The Decision Management Process (DM), on the other hand, belongs to project pro-

cesses within the main system context process group of the ISO/IEC 12207. The

process analyzes project alternatives in order to then select one of them. The project

must confirm that the preferred alternative resolves the issue that a request for a deci-

sion has identified. The process relies on the decision-making strategy to deal with

decisions. The process specifies activities, tasks, and outcomes. There are also in-

formative notes.

4.2 Design mapping

We are interested in identifying common actions and the differences among process

elements in order to provide support when an organization wishes to define a decision

process to support trade-off studies. We use a matrix in which we can see the relation-

ships between the elements of both models, and include the work products (outcomes)

used or produced in each practice or activity. The heading of Table 1 depicts the tem-

plate elements.

4.3 Execute mapping

The results attained after comparing both models are presented in Table 1. We found

that all the tasks and activities from the DM process are related to the DAR process

practices. The processes’ outcomes are aligned with DAR specific practices.

Table 1. Mapping between DAR y DM processes (Legend: SUB: sub-practices, SP: Specific

practice; DP: Decision planning, DA: Decision analysis, DT: Decision tracking)

CMMI specific

practices

ISO/IEC

12207:2008

activities and

tasks

CMMI outcomes ISO12207 outcomes

SP 1. Establish

guidelines for deci-

sion analysis (100%)

 Guidelines for when to apply a

formal evaluation process

Decision-making strategy,

applicable policies and proce-
dures

SUB 1. DP Task 1

SUB 2. 6.3.3.3

SP 2. Establish

evaluation criteria

(33%)

 Documented evaluation crite-
ria, rankings of criteria im-

portance

Decision-making strategy

SUB 1. DP Tasks 1, 2,
3

SUB 2. DA Task 1

SUB 3, 4, 5,6

SP 3. Identify alter-

native solutions

(33%)

 Documented evaluation crite-

ria, identified alternatives

Alternative courses of action,

decision-making strategy

SUB 1.

SUB 2.

SUB 3. DP Task 3

SP. 4. Select evalua-

tion methods (33%)

 Selected evaluation methods Decision-making strategy

SUB 1. DA Task 1

SUB 2, 3

SP 5. Evaluate

alternative solu-

tions (66%)

 Documented evaluation

criteria, rankings of criteria
importance, identified alterna-

tives, selected evaluation

methods, evaluation results

Decision-making strategy,

alternative courses of action,
resolution, decision rationale

and assumptions, (preferred

courses of action)
SUB 1. DA Task 2

SUB 2. DT Task 1

SUB 3. DT Task 1
SUB 4, 5

SUB 6. DT Tasks 1, 2

SP 6. Select solu-

tions (50%)

 Recommended solutions Resolution, decision rationale
and assumptions, (preferred

courses of action)

SUB 1.
SUB 2. DT Task 2

3.1 Establish quality requirements

The comparison results show that there is an overlapping between the DM and DAR

processes. Indeed, the task of the DM process can be 100% addressed by DAR prac-

tices. However, the DM process covers only 52% of DAR practices. The main differ-

ences between the process outcomes are the terms used to name informational ele-

ments in both models. DM includes a decision-making strategy as a basis to capture

all relevant data related to carrying out a decision-making process, while the DAR

process provides more details as regards dealing with process outcomes. Since the

DM process can be embedded in the DAR process, we use the latter as a basis to de-

scribe process quality requirements. Although we rely on the DAR specific practices,

the proposal can help to understand the activities required to support trade-off studies.

4 Framework to support software quality trade-offs

The research presented in this paper has been conducted in the context of the industri-

al project MEDUSAS (Improvement and Evaluation of Software Maintainability,

Security, Usability and Design) whose goal is to build an ISO25000-based environ-

ment to support quality control and quality management. The project scope includes

the assessment of both code and design models in order to determine the maintainabil-

ity, security and usability of software products. The methodological component of

MEDUSAS contains a quality assurance methodology in order to provide companies

that require software quality control support with an independent assessment service.

Moreover, the quality models were built in order to link terms, concepts, measures

and heuristics to the aforementioned software quality characteristics.

One important issue that emerged once the quality models, measures, heuristics and

checklist of security, maintainability and usability quality characteristics had been

proposed was how to suitably manage the tradeoffs among them. This resulted in our

proposal for a process framework to manage the interactions among quality require-

ments. This framework is composed of conceptual, methodological and technological

elements. This paper focuses on the methodological component in which the process-

es required to make a trade-off decision are delineated. The set of processes described

here are related to the MEDUSAS quality assurance methodology and support the

monitoring and control of conflicts among quality attributes. Fig. 1 shows the princi-

pal processes in addition to a repository of models, methods and techniques used to

perform trade-offs, and the dependences matrices among quality requirements.

The processes at the top of Fig. 1 correspond to the roles responsible for improving

processes. These processes lead to the tailoring of a software quality model that is

appropriate for the kind of software products that a company develops in which criti-

cal quality attributes are established and suitable measures are identified and evaluat-

ed. The establishment of a product quality goal process then takes place to diagnose

the quality of both the company’s products and those of the competition in order to set

a benchmark to permit the identification of future quality levels of critical attributes,

and the mechanisms employed to meet those quality levels are documented.

The processes depicted at the bottom of Fig. 1 support conflict management when

software engineers are developing a software product. The first attempts to achieve a

common understanding as regards the software quality vocabulary. The second pro-

cess seeks potential conflicts among quality requirements. The process identifies these

by using the interaction matrices to check dependencies among quality requirements.

If a conflict is detected, then the software quality trade-off process is performed.

As this paper addresses tradeoffs, we present a workflow of the activities in the gener-

ic process trade-off study process (Fig. 2). The activities correspond to DAR specific

practices, but the identification of a trade-off situation is also added in order to high-

light its relevance. The right-hand side of Fig. 2 shows the work products built

throughout the process, while the left-hand side depicts the products built by the other

framework processes, with the exception of negative interaction in which the prob-

lems among quality characteristics are documented in the MEDUSAS repository.

MEDUSAS

Software Quality models

Measures

Heuristics

Interaction matrices

Purpose:

 Elaborate a software product quality model

suitable to type of software products that

organization performs.

Outcomes:

· Tailored quality model

· Definition of vocabulary

· Selection of suitable measures

Tailored Software Product Quality Model Process

Purpose:

Build a plan in which improvement goals are setting

up with regards the current product quality and the

expected product quality

Outcomes:

· Identification of relevant quality characteristics

· Current product quality

· Current competence product quality

· Expected quality levels

· Identification of solutions means

· Identification of positive interactions

Establishment of Product Quality Goals Process

Purpose:

 Make decisions about the best alternative to

deal with confiict among quality requirements

Outcomes:

· Rankings of criteria importance

· Identified alternatives

· Evaluation methods selected

· Evaluation of results

· Recommended solutions

· Identification of negative interactions

Software Quality Trade-offs Process

Purpose:

 Identify potential conflict among quality

requirements

Outcomes:

· Registration of quality requirements

· Classification of quality requirements

· Keep on traceability of quality requirements

dependencies

· Identification of potential conflicts among

quality requirements

Monitoring Quality Requirements Process

Purpose:

 Share the same software product quality model

among project stakeholders

Outcomes:

· Published quality model

· Explanation about the meaning of terms

· Agreement among stakeholders for using a

tailored quality model

· Selection of expected quality goals

Shared Software Product Quality Model Process

Quality models Positive interactions

Quality models Negative interactions

Fig. 1. Framework used to deal with software quality trade-offs

Identification of trade-off

situation

Tailored quality

model

Established trade-off

criteria

Building alternatives

Recommended solutions

Description of trade-

off situation

Selection of methods

Prioritized criteria

Documented

alternatives

Evaluation methods

Evaluation of alternatives Tradeoffs results

Tradeoffs evaluation

report

MEDUSAS repository

Dependency

matrices

Negative interactions

Fig. 2. Activities and products of software quality tradeoff process

Each activity is composed of several tasks. For instance, the establishment of trade-

off criteria activity consists of the tasks described in Table 2. We also suggest some

techniques that can be used to carry out these tasks. Maintainability, security and

usability are the main quality characteristics that have been considered in MEDUSAS,

and we have reviewed literature in order to identify conflictive interactions among

them. We are currently surveying the companies that are working on this project in

order to explore how they are dealing with conflicts among quality characteristics. An

excerpt of the contents of this survey is shown in Annex A.

Table 2. Tasks from establishment of trade-off criteria activity

Tasks Products Methods or techniques

Select quality charac-

teristics from tailored

quality models as

criteria

Input: tailored quality

models, description of

trade-off situation

Output: selected qual-

ity characteristics

GQM in order to identify goals from rele-

vant stakeholder

Add additional crite-

ria for evaluation of

alternatives

Output: additional

criteria

Meetings or interviews to add other criteria,

e.g. costs and utility

Identify compulsory

criteria

Output: compulsory

criteria

Interviews or meetings to identify the quali-

ty criteria that are compulsory to all alterna-

tives

Determine criteria’

priorities

Output: weight of

each criterion

This could be determined using the AHP

technique

Pilot criteria and

ranking

Output: result of

testing criteria and

ranking

Apply criteria in an alternative to verify that

criteria are useful. Verify that criteria are

traceable to requirements, business objec-

tives or other sources

5 Conclusions

If software development organizations are interested in improving their product quali-

ty, then they must consider how to deal with quality requirements, and particularly

with any negative interactions among them. We have reviewed the main contributions

from the quality requirement research area that are focused on the analysis and design

stages of the software lifecycle. We have also enumerated some methods used to per-

form software quality trade-offs. Although this research area is still in the develop-

ment phase, software organizations should improve the management of dependencies

among quality requirements.

In order to support software organizations, we have proposed a framework to deal

with issues regarding quality attribute interactions. This framework relies on require-

ments extracted from process improvement models and from issues to be considered

when a project attempts to manage software product quality attributes. The software

quality trade-off process, which is part of the framework, considers the requirements

for decision-making processes found in CMMI and ISO/IEC 12207. We have used a

harmonization technique to compare the processes in order to discover overlaps be-

tween DM and DAR. Since tasks from the DM process are covered by DAR process

practices, we decided to take the latter as our primary source of requirements. We

have also shown the main issues and recommendations that must be considered when

a project deals with quality requirements.

The process framework addresses the tailoring of product quality models and the

establishment of quality goals. At a project level, the processes attempt to ensure that

stakeholders maintain an agreed meaning of quality attributes, monitor potential nega-

tive interactions among quality attributes, and finally, perform the software quality

trade-off supported by rational selection of the alternatives that lead to a balance

among quality attributes. The framework maintains the data regarding quality attrib-

ute interactions in order to assist with decision-making, and particularly trade-off

processes. We are currently studying how companies identify and resolve conflicts

among quality requirements, in the context of MEDUSAS project.

As future work, we are considering whether the proposed framework will be suffi-

ciently flexible to deal with different quality standards. The conformance require-

ments could also be used to classify diverse trade-off methods. In order to attain the

benefits of interaction management, it is necessary to propose a method with which to

capture the knowledge concerning both positive and negative types of interactions.

Traceability, another important issue, must be implemented in order to manage inter-

actions and dependencies. It is also necessary to analyze the trade-off methods and

understand how they can be linked to the proposed framework. We are currently ex-

ploring companies’ awareness as regards interactions among quality requirements in

order to refine our proposal.

References

1. Barbacci, M., M. Klein, T. Longstaff, and C. Weinstock. Quality Attributes (CMU/SEI-95-

TR-021). 1995. Available from:

http://www.sei.cmu.edu/library/abstracts/reports/95tr021

.cfm

2. Boehm, B. and H. In: Identifying quality-requirement conflicts. IEEE Software. 13(2), 25-35
(1996)

3. Berander, P., et al. Software Quality Attributes and trade-offs. 2005. Available from:

http://www.uio.no/studier/emner/matnat/ifi/INF5180/v10/u

ndervisningsmateriale/reading-

materials/p10/Software_quality_attributes.pdf

4. Paech, B. and D. Kerkow: Non-Functional Requirements Engineering - Quality is essential.

In: B. Regnell, E. Kamsties, and V. Gervasi (eds.) 10th Anniversary International Workshop

on Requirements Engineering: Foundation of Software Quality (REFSQ'04). pp. 237-250.

(2004)

5. Chung, L. and J.C.S. Do Prado Leite: On non-functional requirements in software

engineering. In: A. Borgida, et al. (eds.), pp. 363-379. Springer Berlin Heidelberg, (2009)

6. Robinson, W.N., S.D. Pawlowski, and V. Volkov: Requirements Interaction Management.

ACM Computing Surveys. 35(2), 132-190 (2003)

7. Alexander, I.: Initial industrial experience of misuse cases in trade-off analysis. In

Requirements Engineering, IEEE Joint International Conference on, pp. 61-68. (2002)

http://www.sei.cmu.edu/library/abstracts/reports/95tr021.cfm
http://www.sei.cmu.edu/library/abstracts/reports/95tr021.cfm
http://www.uio.no/studier/emner/matnat/ifi/INF5180/v10/undervisningsmateriale/reading-materials/p10/Software_quality_attributes.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF5180/v10/undervisningsmateriale/reading-materials/p10/Software_quality_attributes.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF5180/v10/undervisningsmateriale/reading-materials/p10/Software_quality_attributes.pdf

8. Chung, L. and B.A. Nixon: Dealing with non-functional requirements: three experimental

studies of a process-oriented approach. In 17th international conference on Software

engineering pp. 25-37. (1995)

9. Barney, S., et al.: Software quality trade-offs: A systematic map. Information and Software

Technology. 54(7), 651-662 (2012)

10. CMMI, P.T. CMMI for Development, Version 1.3 (CMU/SEI-2010-TR-033). 2010.

Available from:

http://www.sei.cmu.edu/library/abstracts/reports/10tr033

.cfm

11. ISO, ISO/IEC 12207:2007. Systems and software engineering — Software life cycle

processes. 2007

12. García-Mireles, G., M. Moraga, F. García, and M. Piattini: Towards the Harmonization of

Process and Product Oriented Software Quality Approaches. In: D. Winkler, R. O’Connor,

and R. Messnarz (eds.) Systems, Software and Services Process Improvement. 301, pp. 133-

144. Springer Berlin Heidelberg. (2012)

13. Pino, F.J., et al.: Mapping software acquisition practices from ISO 12207 and CMMI. Journal

of Software Maintenance and Evolution: Research and Practice. 22, 279-296 (2010)

14. Jedlitschka, A. and D. Pfahl: Towards Comprehensive Experience-Based Decision Support.
In: T. Dingsøyr (eds.) Software Process Improvement. 3281, pp. 34-45. Springer Berlin

Heidelberg. (2004)

15. Zannier, C., M. Chiasson, and F. Maurer: A model of design decision making based on

empirical results of interviews with software designers. Information and Software

Technology. 49(6), 637-653 (2007)

16. Aurum, A. and C. Wohlin: The fundamental nature of requirements engineering activities as a

decision-making process. Information and Software Technology. 45(14), 945-954 (2003)

17. Ruhe, G.: Software Engineering Decision Support – A New Paradigm for Learning Software

Organizations. In: S. Henninger and F. Maurer (eds.) Advances in Learning Software

Organizations. 2640, pp. 104-113. Springer Berlin Heidelberg. (2003)

18. Ngo-The, A. and G. Ruhe: Decision Support in Requirements Engineering. In: A. Aurum and

C. Wohlin (eds.) Engineering and Managing Software Requirements. pp. 267-286. Springer

Berlin Heidelberg. (2005)

19. Van Lamsweerde, A., R. Darimont, and E. Letier: Managing conflicts in goal-driven

requirements engineering. IEEE Transactions on Software Engineering. 24(11), 908-926
(1998)

20. Egyed, A. and P. Grünbacher: Identifying requirements conflicts and cooperation: How

quality attributes and automated traceability can help. IEEE Software. 21(6), 50-58 (2004)

21. Zulzalil, H., A. Ghani, M. Selamat, and R. Mahmod: A Case Study to Identify Quality

Attributes Relationships for Web-based Applications. IJCSNS International Journal of

Computer Science and Network Security. 8(11), 215-220 (2008)

22. Henningsson, K. and C. Wohlin: Understanding the Relations between Software Quality

Attributes - A Survey Approach(eds.) 12th International Conference for Software Quality. pp.
1-12. Ottawa, Canada, (2002)

23. Sadana, V. and X.F. Liu: Analysis of conflicts among non-functional requirements using

integrated analysis of functional and non-functional requirements. In Computer Software and

Applications Conference. COMPSAC 2007. 31st Annual International pp. 215-218. (2007)

24. Falessi, D., G. Cantone, R. Kazman, and P. Kruchten: Decision-making techniques for

software architecture design: A comparative survey. ACM Computing Surveys. 43(4) (2011)

http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm
http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm

25. Babar, M.A., Z. Liming, and R. Jeffery: A framework for classifying and comparing software

architecture evaluation methods. In Software Engineering Conference, 2004. Proceedings.

2004 Australian, pp. 309-318. (2004)

26. Vantakavikran, P. and N. Prompoon: Constructing a Process Model for Decision Analysis and

Resolution on COTS Selection Issue of Capability Maturity Model Integration. In Computer

and Information Science, 2007. ICIS 2007. 6th IEEE/ACIS International Conference on, pp.
182-187. (2007)

27. Phillips, B.C. and S.M. Polen: Add decision analysis to your COTS selection process.

CrossTalk. 21-25 (2002)

28. Hayshi, A.: Establish decision making process for selecting outsourcing company. In 21

International Conference on Softwre Engineering and Knowlegde Engineering, SEKE 2009.,
pp. 666-671. (2009)

29. Pardo, C., et al.: From chaos to the systematic harmonization of multiple reference models: A

harmonization framework applied in two case studies. Journal of Systems and Software.

86(1), 125-143 (2013)

30. Siviy, J., P. Kirwan, J. Morley, and L. Marino. Maximizing your Process Improvement ROI

through Harmonization. 2008. 1-16]. Available from:

http://www.sei.cmu.edu/library/assets/whitepapers/multim

odelExecutive_wp_harmonizationROI_032008_v1.pdf

Annex A. Partial questionnaire

Section 4 of this paper mentions a survey. The participants in this survey were re-

quested to specify the quality attributes that they had addressed in the project. We

then asked them the following, using a pairwise strategy

1. What kind of dependency did you observe in each pair of quality attributes? Posi-

tive, negative, independent or unidentified?

2. What rationale was used to determine this type of dependency?

3. In which life cycle stage was the dependency identified?

4. What means were used to meet this pair of quality characteristics?

5. What measures did you apply to verify the dependency?

6. What elements did you consider to evaluate the dependency as negative?

7. What procedures did you use to resolve the negative dependency?

8. What was the impact of negative dependencies on quality product requirements?

9. What was the impact of negative dependencies on software design, coding and

testing?

10. Which participants were involved in the negative dependency identification and

conflict resolution?

http://www.sei.cmu.edu/library/assets/whitepapers/multimodelExecutive_wp_harmonizationROI_032008_v1.pdf
http://www.sei.cmu.edu/library/assets/whitepapers/multimodelExecutive_wp_harmonizationROI_032008_v1.pdf

